Supplement to “The Term Structure of Macroeconomic Risks

at the Effective Lower Bounds”

Guillaume ROUSSELLET*

A Proofs and Parameter estimates

A.1 The Gamma-zero () distribution

The gamma-zero autoregressive process was introduced by Monfort et al. (2017) as a
generalization of the autoregressive gamma process of Gouriéroux and Jasiak (2006).
Let 3, = J(Xy, z—1) be a non-negative process which is a function of the risk factors
X; and z;_1, and j; be a Poisson variable with intensity J;. z; is conditionally gamma-

zero distributed if:
Jil Xe, 200 ~ P <3(&, £)> and  z/|j; ~ Gamma;, (c) , (A.1)

that is, conditionally on the Poisson mixing variable, z; has a gamma distribution with
shape (or degree of freedom) parameter j; and a scale parameter c. When j; = 0,
the conditional distribution of z; converges to a Dirac point mass at zero. Integrating
with respect to j;, we obtain the conditional distribution of z; given X; and z;_; that
is called gamma-zero, encompassing a zero point mass. The conditional distribution

of z; given X, and its past can be expressed with its conditional Laplace transform:

E [exp(uzzt)|&,£] = exp( 1=C Jt) , (A.2)

1 —u,c
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In this paper, we consider an intensity which is a linear-quadratic function of X; and

a linear function of z;_; (see Equation (4)):

U,C

E [exp(uzzt)‘&, E} = exp ( (o + 21 + kB X; + (5’Xt)2)> .

1 —u,c

The properties of the gamma-zero are such that its first two conditional moments are

linear in its underlying intensity J;:
E (zt‘&, zt,l) =c¢J;, and V (zt‘&, zt,l) =227, .
We can expand the function of X; in the intensity:

KBXi+ (B'X)? = KB (u+ X1 +v)+ [B (u+ DX 1 +1v,)]°
= w8 (ot Xy + ) + { [B (it 9Xe)]” o+ (B0)” 428" (o X1m) B |
= wf'p+ (3#)2 + 'S + kB PXy 1 + (5/‘1>Xt—1)2 + 2 (ﬁlﬂ) (BI(I)Xt—l)

+ KB+ [(5’%)2 — B’Eﬁ} +2(u+®Xi_1) BB

Using the conditional moments of linear-quadratic Gaussian processes (see technical
Appendix B.2), the last row has zero conditional mean given the information available

at t — 1. The short-rate is then given by:

ry = z—l—cjt-i-ﬁ:f
= r+cEki (jt) + e}
= r+ec [O{—i—(bZt_l + (:‘i‘i‘ﬁ/,ua) 6IM+/8/25+ (K+2,U,/5) 6/(I)Xt_1 + (B/q)Xt—l)2:| +€7t”

= r+clat (k+6'u) f'u+ B'Ep] +0$ z-1te (k +20'B) BOXy1 + ¢ (B0X—1)" + e,

=a* =¢*

and by definition we obtain:

re=(1—¢r+a* +¢"'r1+c(sk+2u0)FPX; 1 + ¢ (5’<I>Xt,1)2 +e;,  (A.3)



and

SAENE [nﬁ’vt + [(6'%)2 — B'Eﬂ] +2(p+ @Xt_l)lﬁﬁ’vt} +e7. (A.4)
For conditional variance, we have:
Vioi(re) = Vi [(li +2(p+ @Xt—1)/5) By + ((5’%)2 - 5,25>] + Vi1 (7)

— 2 ([n +2(u+ DX,) B2 BSB+2 (5'25)2)
+ 2 (a + oz + (k+ ') fu+ B8+ (k424 8) B/OX, 1 + (ﬁ’<I>Xt71)2> ,

which is a linear-quadratic function of X;_;.

A.2 Affine P-property

In this Section, we show that our physical dynamics are affine. Define u = [ul,, Vec(U,)', u.],

where the blocks have respective size K, K? and 1. We first introduce the following

Lemma.

Lemma A.1 The conditional Laplace transform of [ X[, Vec(X; X])"|" given its past is
given by:

E [exp (WX, + XU, X,) ]XH]

1 1
= exp {u;([}( —25U,) ! (,u + §Zux> + WU (I —2%U,) T — 5 log ‘[K — 22U,

o (up + 2Up) (I — 25U,) 10X, g + X1 ®'Uy (I — 22Uw)1<I>Xt1}

Proof See Cheng and Scaillet (2007). |
Let us now calculate the conditional Laplace transform of f; := [X], Vec(X, X])', 2]
given f;_1.

E [exp (u' fy) ‘E} =FE {exp (ul, Xy + X{Up Xy + uz2t) ’E}



- E {E [exp (W, X, + X[Uu Xy +u.20) | fion, Xt} |@}

UyC
1—u,c

li
KU ,C UzC
exp q | ue + B) Xe+ X[ Up+——=88") Xi ¢ |frr]
1—wu.c 1—wusc

E [exp {%Xt + XU X + o+ kB’ Xy + X{BB8' X + ¢2t1]} |ft1:| )

= exp( —— <a+¢zt_1>)1E

1—usc

We hence obtain the conditional Laplace transform of [X[, Vec(X,X])'|" applied in
/ / /
the two arguments {(ux + RS ) : Vec (Ux + Mﬂﬁ’) } . Using Lemma A.1, we

1—uc

have:

E [eXp (u' ft) ‘E}

! —1
_ eXp{luzc (a+¢zt1)+(ur+1fwzc B) [IK_2E (Uﬁluzc cﬁﬂ/)} {u+;2 (UI+ s 5)]

U,C —u,C —u 1—wu,c

_|_

1—n1
KU,C ! u,C u,C -1

(i 25 ) (i 25 ) (s 2 ) e
1—wusc ULC .

. 1— 1—usc

1—wu,c

—1
W (U4 =2 33 1 — 25 (U + —=% 88 )| = Liog
1—wu,c 2

I — 2% (Um L e ﬂﬁ’)
1, C

_|_

_|_

1—u,c 1—u,c

-1
X/, (UI + MBB’) {IK _ 9% <U$ 4 =€ ﬁﬁ’)} @th} . (A.5)

This conditional Laplace transform is an exponential-affine function of f,_1. (f;) is

therefore an affine process under the physical measure. [ |

A.3 Convexity adjustment for the pricing kernel

We now turn our interest to the derivation of the convexity adjustment in the pricing

kernel given by Equation (7). By no-arbitrage, we have that:

Eiq (M) = e "' <= Eiy [exp (Ao + Ael) | = exp (&-1) -



To come back to the formulation of Equation (A.5), it is sufficient to multiply the
left- and right-hand side of the previous Equation:

E;,; [exp (A;_lvt + )\reg)} = exp (§-1)

— K. [GXP ()‘:5_1Xt + /\rzt)] = exp [St—l + A (4 2X1) + MEiy (Zt)} :

Thus, using the result of Equation (A.5), we obtain:

Gor = N (et B X)) = M By (21) + 5
+ <At 1+1m; 5)[11(—22(
+ ’< >{IK—22<
’ [(At 1 AAc5>/+2 (
+ X£_1q>’<1_c ’> [IK—22<

A.4 Risk-neutral affine property

(a + ¢zi—1)
-1
} {u + %Z <)\t—1 + 1’?;(;0[3)}
A )
)] [t — 710g I — 2% <1 — ;TCBB>
—1
)] =22 (25007)]exin
)] OX, 1.

To derive the risk-neutral conditional Laplace transform of f; given f, 1, we use
the transition formulas provided in Roussellet (2015), Chapter 4. Using the block
recursive affine structure of f;, the risk-neutral conditional Laplace transform of z

given X; and f;_; is given by:

E (exp {[u: + M) 2} ’Xt, E)
E (exp {Azt | X, E)

EC (exp{uzzt}‘Xt, E)

_ exp{( (UZ—F)\T)C _ ArC )(a—i-/iﬁ/Xt‘FXéﬁﬁlXt“‘Cbzt—l)} 7

I—(u,+A)e 1—=X\c

(A.6)



where E2(.) is the expectation operator under the risk-neutral measure. The differ-

ence of ratios can be simplified as follows.

(uz+A)e  Ne (L= M) (us + Ar)e = [1 = (uz + Ar)c] Are
I—(us+ M) 1—Xec [1— Ac] [1— (uy + Ar)(]
Uy — AplUzC + Uy ApC U,C

S I W Y CYS W 1 Rl S W Y PR W v

Q

c
Define now ¢? = , that is c = ———. We obtain:
1—M\ec 14+ \.cQ
o
U,C _ Uz Trn.cQ 1 —1—)\ch » uch _ uch
1- (uz + )\T)C 1-— (uz + Ar)% 1- UZCQ 1+ )\rCQ 1-— UZCQ .

Hence the conditional Laplace transform of Equation (A.6) is given by:

u, . @ + kB Xy + X{BB' Xy + dzi1 }

eXp{UzZt}‘ t) fe—1 exp { 1—u,Q 11— \ec

Q

U,C / /

= exp{ ————— (aQ + k9B X, + X{ﬂ(@ﬁ@ X+ qﬁta_l) .
1 — u,cQ

2z is therefore conditionally gamma-zero distributed given X; and its past, where the

risk-neutral parameters are given by:

Q _ - 59— B Q_ R ¢Q — ¢ e__ ¢

VI=X\c’ V1I=\c’

We turn now to the computation of the risk-neutral conditional Laplace transform of
(X!, Vec(X,X!)") given f,_;. Again, using the property in Roussellet (2015) Chapter

4, we have:

E [GXP {(Ux + Xt—l),Xt + X{(Us + Xr)Xt} |h>

E [exp { X Xi + Xi(U, +2) X, | | i)

)

EC (exp {(ul X, + X[UX,} | E)



where Xt_l and Xr are given by:

K:_)\Tc + /\1Xt—1 ) Xr = /\TC 56, .

Mot = A
=1 ot ArC 1—M\c

1

The transition between the physical and risk-neutral dynamics of X; are as if the
SDF was exponential-quadratic, with adjusted prices of risk Ayq and Xr. Since X,n
the price associated to Vec(X;X/) is constant through time, we can rely on the results
of Monfort and Pegoraro (2012). We obtain that X; follows a Gaussian VAR(1) under

the risk-neutral measure and:

X = pu?+ 00X,y 40,

where v RN (0,£9) is a Gaussian white noise, and p@, ®¢ and $? are given by:

KAC
by
1— —\C /B)
Ar
1_—

ArC 550 _12
1—M\c '

Ar -
N@ = (]K—Q ¢ Eﬂﬁl) <M+ZAO+
ArC 1

-1
o — (IK—Q ircEﬂﬁ’) CERY

»Q — <1K—2

The class of distributions are thus the same under the physical and the risk-neutral
measure. Transforming Formula (A.5), the risk-neutral Laplace transform of f; given

fi—1 is given by:

EQ [exp (u'fz) |ﬁ]

Q 1 Q ’
= expd %€ (a@ + ¢ta_1) ~ “log I — 250 (UI 4 U2 _g0g0 )
1—u,c@Q 2 1—u,cQ
Q. 2 ’ Q AT 1 Q. Q
. (uz n KQu,c /BQ) |:IK _ 950 (Uz n uzc 5240 )] [M@ 41y (uz n KPuzc 5Q>}
1—wu,c@Q 1—wu,cQ 2 1—u,cQ

/ Q / Q / 1
+ 0¥ (U + 225080 | — 230 (U, 4+ —2E 5080 4@
u,cQ 1—u,c@

QR ! Q Q AT
N [(uer K uzcC 5@) +ou? (Uz+ 1 uzd Q/@@/g@’)} I:IK*ZE@ (Uz+&ﬁ@6@)j| a%x,

— UzC

— u,cQ

, u,cQ / u,cQ AT7H
+ X900 (Uz + 1 BQBQ) [IK -2x¢ (Uz + o 88t )} 20X, o (A7)



This conditional Laplace transform is an exponential-affine function of f; 1. (f;)
is therefore an affine process under the risk-neutral measure. Combined with the
fact that both r;, and m; are affine functions of f; augmented with the idiosyncratic
inflation shocks 7, this is sufficient to define an affine term structure model (ATSM)

(see e.g. Dai and Singleton (2000) or Darolles et al. (2006)).

A.5 Multi-horizon Laplace transform

Using the notation:

I [exp (u' fy) ’E} =: exp {AQ(u) +BY ()X, + X, Cou) X, + ]D)@(u)zt,l} :

where:

Q
U5C 1
AQ(u) = 1-a CQa@ — flog

1—u

I —25° (Uz L e 5887 )‘

/ —1
1 Q
b (g g k—m@Uﬁ—mz BN |0+ 520 (e + 80
1 —u,cQ 1 —u,cQ 2 1—u,c®

-1

/ @ i
+ ul (Uer ft=¢ 6%Q> {IKZEQ (Uer LC ﬂ‘@ﬁ@)] I

1— 1 —u,c®
BQ o 0 KU,C Q 50 - chQ 0 HUZCQ
[0} I — 2% = = 2 "
(u) [K (U,+1 QM )] (u +1_M@ﬁ)+ (Uﬂ_uzc@
RrU RrU CQ -1
Q) = 0% (U, + =C Wﬂ Ix —25% (U, + ———p%3¢ o
1— 1 —u,cQ
Q
U,C
D@ = z Q
(u) T

Since the one-period ahead conditional risk-neutral Laplace transform of f; given
fi—1 is exponential-affine in f; 1, it is well-known that the conditional multi-horizon
risk-neutral Laplace transform of (fi, ..., fizx) is also exponential-affine in f;_; (see

e.g. Darolles, Gourieroux, and Jasiak (2006)). We obtain:

k
exp (Z u;ft+i> ‘h] = €xp (A‘,?(uo, oy Up) +B<}?,(u07 ey ug) Xy
i=0



where:

Ag(um ’
By (uo, - -,
Cg(uoa ,
Dg(um ,

with initial conditions A, (u, . . .,

C(uy,) and Dgl(uo, ce

A%i(uo, coyug) =

B%i(uo,...,uk) =
C%i(uo,...,uk) =

]D)%i(uo, Co,ug) =

A(l?z (ug, ... u

Uk—i+1 T

cQ

(
o

Uk—i+1

D@ <uk_i+1 +

uk)

ug)

Bgi_l(uo, e
B%i—l(uo’ e ,uk) ,Vec
Bgi_l(uo, .

331—1(1‘07 ce ,uk) ,Vec

= A%uy), Bgl(uo, U
ug) = D9(uy), and Vi € {2,...,k},

/

,uk)> ,D%_I(UU, .
" ne

,uk)) 7Dk,i—1(u0""
" ne

,uk)> ,Dk7i_1(u0, .
" ne

,uk)> ,Dk7i_1(u0, .

Since the conditional Laplace transform of f; given f; ; under the physical measure

is the same function as the risk-neutral one, but plugging in the physical parameters

instead of the risk-neutral ones, we easily obtain:

th—l(u()y e

=: exp (Ak(uo, o

7U'k):]E

)

k
exp (Z u;ft-&-i) }E]
i=0

s uk) + ]B%;(uo, e Uk)Xt,1 + X{fle(uo, ..

Y

) X1 + Dy(uo, .

1
~

IS
F
~ T O~ N~

u)t(A )



where:

Ag(ug, ..., ug) = Agg(ug,..., ug)
Br(ug, ..., ug) = Brr(uo,..., ug)
Cr(uo, ..., ur) = Cyiluo,..., ug)

( ) ( )

]Dk Ugy ..., Uk

with initial conditions Ay q (uo, . . ., ur) = A(ug), Be1(ug, - .., ug) = B(ug), Cra(uo, . . .

C(uy) and Dy q(uo, ..., ux) = D(ug), and Vi € {2,...,k},

Akﬂ-(uo, ceey ’U,k) = Ak,i,l(ug, e ,’U,k)

Bk‘,i(uO? ceey uk’) = B Ug—i+1 T B;c,ifl(u(b cee ,Uk) ,Vec ((Ck?yi—l(u(]v cee ,Uk;))

(C;w’(uo, ey uk) = C (Uk—i—i-l + ]B;w-_l(u(), ... ,uk) , Vec (Ck,i—l(u07 e uk))l ,D]m‘_l(u(), .

Dy i(ugs .-, ux) = C (ukiJrl + | By (uo, - ug) , Vec (Crii(uo, - . ., ug))  Dpi1(ug, - .-

A.6 Pricing recursions

In this Section, we derive the pricing recursions for nominal bonds and TIPS. By

no-arbitrage, we have:

n n— n)* _ n—1)* CPI
]Dt( ) _ E? |:e—m Pt(+1 1)] and Pt( ) E? e rtPt(_H 1) CPtI+1
t

We postulate the form given by Equation (14), that is:

P = exp (A% +BY X, + X[Co X, + D5 z) |

10

+ A (ukz’Jrl + ]B;c,i—l(u()a - ,uk) , Vec ((Ck7i,1(’LL0, ce uk))/ ,Dkﬂ-,l(uo, o
( 7Dk,i—1(u07 ..

]
~

~— s N~ ~—



Focusing first on nominal bonds, we obtain:

A+ B, X; + X{C, Xy +Dpnze = —1—2+Ap_1 +log E(t@ [exp (B;l_l X1+ X1 Cio1 X1 + Dy Zt+1)]

Therefore, using the formulation of Equation (A.7), starting from initial conditions
AOIO, BOIO, COIO, DOIO, Weget:

'Dn_lcQ 1 Dn_lc@ /
An = T+ A1+ — o — Zlog|lx — 259 (Cpog + —2—— 5050
n T+ Ap—1+ 1*Dn_1CQa 2 og |1k n—1+ 17Dn_1CQﬁ 5
kD, 1R ! Dyp_1Q AL 1 kD, 12
B.._ & mnml® 50 Iw -2 (¢ _mmml® . 3030 QL 20 (. v Tnolt g0
+ ("1+1—Dn,10@5) [K (n1+1—Dn71cQBﬁ pEt g n1+1—Dn,1cQﬁ
n 04 <C n Dn_lcQ B@ﬁ(@/> |:[ 22@ (C n Dn—lCQ 6@ﬂ@l):|71 o
B\t T 1T p, 0 K "I D, 1@ K
!
D, _10@ / -t
B — o {1 ,22@<C 4 Dt g Q)}
n K n—1 1 17D"_1CQB B
Qp Q D Q A
K n—1C n—1C
x B, _ B k1) 2(¢.,_ _ =1 50450 Q
|:< n—1+ 1—Dn_1c©6 )+ ( n—1+ 1—Dn_1c®6 B8 14
/ D ,1CQ / D ,1CQ ’ -1
C - % (¢ _ _7n=1"  504Q I —22Q (¢ _7n=1" 5QzQ »Q
n (n 1+1—'Dn71CQB/B K n 1+1—'Dn716@/8/8
anlc@
D, = ——— _4%_1.
" 17Dn710@¢

Now, turning to TIPS, there is a slight subtlety associated with the fact that w4,
defines the year-on-year inflation and not the monthly inflation rate. The simplest
case arises for maturities that are multiple of 12, (yearly maturities), which we have

in the observables. In this case, the price of a TIPS with maturity n = 12n is given

by:
12n—1 n
o (=3 r oo (L )|
i=0 j=1

The pricing formulas are still closed-form but rely on the recursions given by the multi-
horizon Laplace transform of the vector ™" = (Xt(aug)/, x{) @ xlo) zt) and
X9 = (X}, eF, 7). We obtain:

12n)*
P~ B —5¢

12n—1
CPLit19
- (— 3 ) OPlism

1=0

P = exp (i — 1271 — %) B2

12n
o (Zuéffi?”)] g
=1

11



where

/
W2 = iy Vi (2 0) (A.10)
/
u = evr Olcioe _1> for i< 12n and /12 # [i/12] (A.11)
/
up = Ukiarcrs Uicos(sn): _1> for i<12n and /12 = [i/[1R[12)

where ¢; ; is the i column of the identity matrix of size j. The recursions for the

multi-horizon Laplace transform is detailed in Appendix A.5.

A.7 Liftoff probabilities

Using the properties of the gamma-zero process presented in Monfort et al. (2017),
the probabilities for the short-term interest rate to stay at its lower bound for n

periods are given by the following:

P (Tt+1:t+n = f‘ﬁ) = P (Zt+1:t+n = 0|ﬁ) = lim E

v——00

exp (Z ) | 4

=1

exp (Z vth) ‘E%AJB)

i=1

Q (Tt+1:t+n = Z’ﬂ) = Q (zt+1:t+n = O‘ﬁ) = lim EQ

V——00

Notice that it is as if we were computing the n-maturity bond price and its respective
expected component for a modified short-rate process. If our short-term nominal
rate was given by —vz;, this would be exactly the case. We thus only have to use the
same pricing recursions as in Appendix A.6 but putting r = 0 and replacing ¢© by

v — +00. We obtain:

n

Q (rt+1:t+n — Z’ﬂ) = exp (Aglelb) + Bgelb)/Xt + thc,(lelb)Xt + D(elb)2t>

P (riiien =r|f) = exp (Aﬁ*elb) + BRI X, 4 XICPEP) x, DE’(elb)zt> .

12



where the loadings follow the recursion:

e € 1 ° '
PICOI Agllbl) —_aQ 5 log ‘[K —2ox@ (C,(llbl) — pepQ >
-1 1 e )
[u‘@ 5= (B - ”QﬁQ)]

b (B = 20 [ — 252 () - 525 )]
1

L ( clet) ﬁQﬁQ) []K —2x@ (C,(fibl) _5(%@,)]7 ue

BED) g [IK _ 950 (Cr(fiti) _ 6%@')] - [(3?}? _ HQ6Q> +2 (C,ﬂeibﬁ - ,BQ,B‘@’)’MQ}
el _ gQ <C7(Ldbl) BQBQ/) []K —250 (Cfflbl) - ,8@,3@’>] ! 50
DgLelb) — 40,

For the physical probabilities, the recursions are the same replacing the risk-neutral
parameters by the physical ones. We deduce the liftoff probabilities, i.e. to see the

first interest rate hike in exactly n + 1 periods.

P (Tt+1:t+n =71, Tt4n+1 > E‘ﬁ) =P (Tt+1:t+n = f‘ft) —P (Tt+1:t+n+1 = Z}ﬁ) .

A.8 Impulse Response Methodology

The affine structure of the model makes it easy to perform an impulse response analy-
sis. All the variables considered in this section can be expressed as linear combinations
of f; components.'” Let us consider the impact of a shock of size s of variable v, on
variable v1, where v; = ¢ f; and v, = €, f;, with e,, and e,, vectors weighting and
selecting the right entries of f; depending on the variables of interest. Let us also
denote by &, = (ey,, - , €y,) the matrix of (¢ — 2) weighting vectors that define vari-
ables v; = e;j f+ that we do not want to shock at the initial period. The impulse

response at horizon n, denoted by ZRF ffn_’“l is given by:

IRFE™ = E (€ frral fiss €, lfi = E(filfier)] = 5 ELLf = E(filfia)] = 0)
— B, frrnlfios, ey lfe = Bl fin)] = 0, )1 — E(flfin)) GO

17. or equivalently, ft(a“g). we drop the superscript for ease of notation.

13



Using the semi-strong VAR formulation of Equation (IA.3), the impulse response
function ZRJF}2 """ is given by:

IRF™ = W B (flfims, €lfe ~ BUIS] = 5. &1~ E(Alfia)] =0)

= E(flfrs €l — E(ilfin)] = 0, ELfi — E(filfi)] :(@)1}5)

which only requires filtered values of the factor f; given initial and observable condi-
tions.

In our empirical exercise, we are in particular interested in shocking components
of X; itself for inflation central tendency or volatility shocks. The IRF of any variable
vy to one of those structural shocks on ¢, X;, ¢; selecting the it" component of X, is

defined by:

n1/2 0
Sl;
IRFZ,™ =€, V" | 1, 51/2 51/2 g n1/2 : (A.16)
52 (1; @ 1)
ckf c(B®B)

where I';_; is defined in technical Appendix B.2. For general linear functions of f;,
the QKF provides a natural procedure to obtain the most probable vector of shocks.

Let B = (e,,, &,). The computable version of the IRF of Equation (A.15) is given by:
~ [~ ~-1] §
IRF = ¢, U [Vee ™ (Q + Qfs 1)B (B’ [Vee™ (Q + Qfi1)] B)

(A.17)
Again, the terms in the bracket are slightly modified such that Vec(XX")y; = Vec(Xy: Xj),)

and zy; > 0. To understand where Equation (A.17) comes from, consider the initial

14



conditions f;_; and the shocks are known without errors, so P,_;;—1 = 0. Replacing
the unknown quantities in Equation (A.15) by the values given by the QKF, the result
is immediately obtained.

So far, we have only considered responses on variables that can be expressed as
affine combinations of the extended vector of factors f;. However, because of the
closed-formedness of the conditional Laplace transform of f; given its past, we can
also compute the conditional expectation of any exponential-affine combination of
fi in closed-form. In general this requires the use of the multi-horizon conditional
Laplace transform, which we detail in the Appendix A.5. In practice, we apply these
formulas to obtain the responses of the ELB probabilities and the corresponding
premia.

The average IRF can be computed in two different ways. First, we can apply For-
mula (A.15) to the initial condition f;_; = [)_(’, ()_( ®X)/, 2},, where X = E(X;)
and z = E(z).'"® Second, we can simulate many initial conditions f;_; using its
marginal distribution, compute the IRFs using Formula (A.15) for each initial con-
dition, and average over the responses. The two approaches are not equivalent since
they flip the order of integration (see for example Gallant et al. (1993) or Koop et
al. (1996)). We rely on the latter method in Section 4.5.

A.9 Parameter Estimates

18. It is worth mentioning that the initial condition f;_; = [X’, Vec(XX')’, E(z;)]’ is different
from fi 1 = E(fi—1) since E[XX'] # E(X)E(X’). However, once conditioning by X; 1 = X, it
follows directly that Vec(X;—_1X[_;) = Vec(X X’) with probability one.
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Table A.1: Parameter estimates: X; dynamics

estimates std. estimates std.
L -0.0392*  (0.0237) u2. -0.0162 (0.0581)
Lo 0.0158  (0.0108) 3 0.0452°*  (0.0186)
oy 0 - ud -0.2521 (0.5486)
Ly 0 - A 0.1948* (0.1056)
- 0.9014***  (0.0156) 2, 0.9639***  (0.006)
Bype  0.0126%%*  (0.0049) o2 . 0.0011 (0.0017)
- 0 - o . -0.0361 (0.0459)
F— 0 - ol . -0.008 (0.0102)
B, 0.0665%**  (0.0232) ol 0.2155***  (0.0427)
Dy 0.9732***  (0.0063) o2 0.9087***  (0.0195)
Dy, o 0 - oY 1.7502%%*  (0.254)
Dy o 0 - oY 0.3881* (0.2356)
Dy -0.0016  (0.0012) o2 -0.0171***  (0.0028)
Doy 0 (2104) 3%, 0.0044***  (0.0012)
By, 0.9826***  (0.0025) Y 0.8364***  (0.0181)
Dy 0 - o2 -0.0194 (0.0205)
Drey,  0.0041%%%  (0.0012) o2 -0.0031 (0.003)
Dooyy 291074 (5.107%) 22, 0.003*** (0.001)
Byyye  0.008%%  (0.0033) oY ., -0.0339 (0.0255)
By, 0.9974***  (9:10~4) oY 0.9885***  (0.0085)
o 0.1159***  (0.0136) 52, 0.1159***  (0.0136)
S ne 0 - 22 0 (0)
DO 0 - 5Y 0 (0)
Syt 0 - 5Y 0 (0)
o 0.0151%**  (0.0042) g 0.0151%**  (0.0042)
Ty o 0 - 52, 0 (0)
Syro 0 - =2 0 (0)
S 1 - s 1.0006***  (2-107%)
yo 1 0 - 2327111 0 (0)
Sys 1 - DA 1 (0)

Notes: Standard deviations are in parentheses and are calculated using the outer-product Hessian approximation. The
-’ sign indicates that the parameter has been calibrated hence does not possess any standard deviation. Significance

level: * <0.1, ** <0.05, *** <0.01.
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Table A.2: Parameter estimates: short-rate and the prices of risk

r¢ dynamics (parameters are divided by 1,200 except c, @ and r)

estimates std. estimates std.
a 0.4171***  (0.1692) a® 0.4905** (0.2081)
B 0.0025 (0.0058) BY 0.0027 (0.0062)
Bo -0.0576** (0.0282) 83 -0.0624** (0.0305)
Byr 0.0398*** (0.0036) ﬁgl 0.0431*** (0.004)
Bys 0.0063 (0.0051) ,Bgz 0.0068 (0.0055)
1.3327%**  (0.2586) K2 1.4453%**  (0.2935)
0.6421***  (0.0426) Q 0.7551***  (0.0455)
c-1200  1.0646***  (0.0697) ®.1200  1.2521%**  (0.0771)
T - 1200 0.1313*** (0.0091) - 100 2.4336 -
Prices of risk and measurement errors standard deviations
estimates std. estimates std.
Ao, m* 0.1986 (0.4512) A0,y1 -0.2619 (0.5507)
Ao, -4.0353%** (1.4374) A0,y 0.1932* (0.1061)
Al 0.5400*** (0.1344) AM,7* 9, -0.134*** (0.031)
Mo+ -0.7579** (0.321) Ao 0.2924***  (0.0612)
Ay o -0.0361 (0.0459) M,y -0.1467***  (0.0184)
Alys.m* -0.008 (0.0102) Mys.01 -0.0194 (0.0206)
M, % o 1.2857*** (0.4019) ALr* yo -0.062*** (0.025)
A, -4.2815%** (1.3907) A,o,ys 0.2543*** (0.0649)
AM,yq,0 1.7499*** (0.254) A y1,y0 -0.0419* (0.0242)
AMyp.o 0.3881* (0.2356) Alys -0.0088 (0.0089)
Ar 0.1406***  (0.0247)
OR 0.0333***  (6-10~%) on 0.0341***  (6-107%)
o) 0.4898 - o120 0.3653 -
a§) 0.2194 - o2 0.4093 -
ozLB 0.0457 - o520 0.7085 -

Notes: Standard deviations are in parentheses and are calculated using the outer-product Hessian approximation. The
-’ sign indicates that the parameter has been calibrated hence does not possess any standard deviation. Significance

level: * <0.1, ** <0.05, *** <0.01.
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